Electrochemical characterisation of graphene nanoflakes with functionalised edges.

نویسندگان

  • Mailis M Lounasvuori
  • Martin Rosillo-Lopez
  • Christoph G Salzmann
  • Daren J Caruana
  • Katherine B Holt
چکیده

Graphene nanoflakes (GNF) of diameter ca. 30 nm and edge-terminated with carboxylic acid (COOH) or amide functionalities were characterised electrochemically after drop-coating onto a boron-doped diamond (BDD) electrode. In the presence of the outer-sphere redox probe ferrocenemethanol there was no discernible difference in electrochemical response between the clean BDD and GNF-modified electrodes. When ferricyanide or hydroquinone were used as redox probes there was a marked difference in response at the electrode modified with COOH-terminated GNF in comparison to the unmodified BDD and amide-terminated GNF electrode. The response of the COOH-terminated GNF electrode was highly pH dependent, with the most dramatic differences in response noted at pH < 8. This pH range coincides with partial protonation of the carboxylic acid groups as determined by titration. The acid edge groups occupy a range of bonding environments and are observed to undergo deprotonation over a pH range ca. 3.7 to 8.3. The protonation state of the GNF influences the oxidation mechanism of hydroquinone and in particular the number of solution protons involved in the reaction mechanism. The voltammetric response of ferricyanide is very inhibited by the presence of COOH-terminated GNF at pH < 8, especially in low ionic strength solution. While the protonation state of the GNF is clearly a major factor in the observed response, the exact role of the acid group in the redox process has not been firmly established. It may be that the ferricyanide species is unstable in the solution environment surrounding the GNF, where dynamic protonation equilibria are at play, perhaps through disruption to ion pairing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertical graphene nanoflakes for the immobilization, electrocatalytic oxidation and quantitative detection of DNA

Vertical graphene nanoflake integrated films having a high density of edge planes have been used as an electrochemical platform to systematically investigate the immobilization, electrochemical oxidation kinetics and direct quantitative determination of natural DNA. Consistently, both transmission electron microscopy and atomic force microscopy observations demonstrate the presence of a self-as...

متن کامل

Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors.

Herein we use Nitrogen-doped reduced Graphene Oxide (N-rGO) as the active material in supercapacitor electrodes. Building on a previous work detailing the synthesis of this material, electrodes were fabricated via spray-deposition of aqueous dispersions and the electrochemical charge storage mechanism was investigated. Results indicate that the functionalised graphene displays improved performa...

متن کامل

Impact of distributions and mixtures on the charge transfer properties of graphene nanoflakes.

Many of the promising new applications of graphene nanoflakes are moderated by charge transfer reactions occurring between defects, such as edges, and the surrounding environment. In this context the sign and value of properties such as the ionization potential, electron affinity, electronegativity and chemical hardness can be useful indicators of the efficiency of graphene nanoflakes for diffe...

متن کامل

Temperature-dependent Crystallization of MoS2 Nanoflakes on Graphene Nanosheets for Electrocatalysis

This work primarily studies the crystallization condition of molybdenum disulfide (MoS2) in MoS2/graphene hybrids by a temperature-varying hydrothermal method from 150 to 240 °C. Flower-like MoS2 nanoflakes were successfully grown on graphene nanosheets and characterized to understand the temperature-dependent crystallization process and the electrochemical performance. The highest electrocatal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Faraday discussions

دوره 172  شماره 

صفحات  -

تاریخ انتشار 2014